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Section 5:

Inference strategies



Roadmap of inference strategies

• A single identifier to represent a document:

Constrained beam search with a prefix tree

Constrained greedy search with the inverted index

• Multiple identifiers to represent a document

Constrained beam search with the FM-index

Scoring functions to aggregate the contributions of several identifiers
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Single identifier: Constrained beam search with a prefix tree

• For docids considering order of tokens

• Applicable docids: Naively structured strings,

semantically structured strings, product

quantization strings, titles, n-grams, URLs and

pseudo queries

• Prefix tree: Nodes are annotated with tokens

from the predefined candidate set. For each

node, its children indicate all the allowed

continuations from the prefix defined traversing

the tree from the root to it
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“Autoregressive Entity Retrieval”. De Cao et al. [2021]
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Example
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Single identifier: Constrained greedy search with the inverted index

• Applicable docids: Important terms

• Inverted index table: Enable the generation in any permutations (unordered

docids) are constructed

• Generation process: The model is expected to produce docids of the highest

generation likelihood. At each step of generation, the terms from the inverted

index table which give rise to the top-K generation likelihood are greedily selected

“Term-Sets Can Be Strong Document Identifiers For Auto-Regressive Search Engines”. Zhang et al. [2023]
4
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Constrained beam search vs. Constrained greedy search

Constrained beam search

Constrained greedy search
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“Term-Sets Can Be Strong Document Identifiers For Auto-Regressive Search Engines”. Zhang et al. [2023]
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Multiple identifiers: Constrained beam search with the FM-index

• Applicable docids: N-grams based docids

• FM-index: An index combining the Burrows-Wheeler Transform (BWT) with a

few small auxiliary data structures

“Autoregressive Search Engines: Generating Substrings as Document Identifiers”. Bevilacqua et al. [2022]
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FM-index: N-gram level scores

Given an input query q, we obtain the weight of each predicted n-gram n:

score(n, q) = max

(
0, log

P(n|q)(1− P(n))

P(n)(1− P(n|q))

)
,

where P(n|q) is the probability of the generative model decoding n conditioned on q,

and p(n) denotes the unconditional n-gram probability.

“Autoregressive Search Engines: Generating Substrings as Document Identifiers”. Bevilacqua et al. [2022]
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N-gram level to document level scores

How to aggregate the contribution of multiple generated n-gram identifiers to its

corresponding documents?
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Aggregation functions: SEAL [Bevilacqua et al., 2022]

The document-level rank score combines the n-gram level rank score score(n, q) and

coverage weight cover(n,K ):

score(d , q) =
∑
n∈Kd

score(n, q)α × cover(n,K ),

where K denotes all the generated n-grams, Kd is the subset of n-grams in K that

appear in d , α is a hyperparameter

“Autoregressive Search Engines: Generating Substrings as Document Identifiers”. Bevilacqua et al. [2022]
9



Aggregation functions: SEAL [Bevilacqua et al., 2022]

For docid repetition problem

• Coverage weight cover(n,K ): Avoid the overscoring of very repetitive documents,

where many similar n-grams are matched

cover(n,K ) = 1− β + β
|set(n)\C (n,K )|

|set(n)|
,

where β is a hyperparameter, set(n) is the set of tokens in n, and C (n,K ) is the

union of all tokens in K with top-g highest scores

“Autoregressive Search Engines: Generating Substrings as Document Identifiers”. Bevilacqua et al. [2022]
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Aggregation functions: MINDER [Li et al., 2023]

The document-level rank score: Sum of the scores of its covered docid

score(q, d) =
∑
id∈Id

P(id |q),

where P(id |q) is the generated likelihood score of the docid id of the document d . And

Id denotes the docids generated for d

“Multiview Identifiers Enhanced Generative Retrieval”.Li et al. [2023]
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Inference efficiency: Memeory footprint
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Inference efficiency: Offline latency
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Inference efficiency: Online latency
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A look back

Inference strategies

- It cannot generate in an unordered 
manner

- Simple
Constrained beam search 

with prefix tree
(De Cao et al. 2021)A single 

docid
- It may require handling a significant 

amount of duplicate terms
- It can generate in any permutations 

of docids

Constrained greedy search 
with inverted index

(Zhang et al. 2023)

- It cannot generate in an unordered 
manner

- Complex construction
- Complex aggregation functions

- It can store all the information of 
documents

- The contributions of multiple docids 
comprehensively are considered

Constrained beam search 
with FM-index

(Bevilacqua et al. 2022)Multiple 
docids

- Depending on design
- The contributions of multiple docids 

comprehensively are considered
- Simple aggregation functions

Scoring functions
(Li et al. 2023)
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Revisit: Challenges of model inference

• How to generate valid docids?

Constrained generation mechanism based on prefix tree, inverted index table or

FM-index

• How to organize the docids for large scale corpus?

Exploiting the structured docid space

• How to generate a ranked list of docids for a query?

One-by-one generation based on likelihood probabilities
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