

Generative Information Retrieval

SIGIR 2024 tutorial - Section 4

Yubao Tang^a, Ruqing Zhang^a, Zhaochun Ren^b, Jiafeng Guo^a and Maarten de Rijke^c https://generative-ir.github.io/

July 14, 2024

^a Institute of Computing Technology, Chinese Academy of Sciences & UCAS
^b Leiden University
^c University of Amsterdam

Section 4: Training approaches

GR usually exploits a Seq2Seq encoder-decoder architecture to generate a ranked list of docids for an input query, in an autoregressive fashion

The common used training objective for both indexing and retrieval is maximum likelihood estimation (MLE):

$$\mathcal{L}_{Global}(Q, D, I_D, I_Q; \theta) = \mathcal{L}_{Indexing}(D, I_D; \theta) + \mathcal{L}_{Retrieval}(Q, I_Q; \theta)$$
$$= -\sum_{d \in D} \log P(id \mid d; \theta) - \sum_{q \in Q} \sum_{id^q \in I_Q} \log P(id^q \mid q; \theta)$$

$$\mathcal{L}_{Global}(Q, \underline{D}, I_D, I_Q; \theta) = \mathcal{L}_{Indexing}(\underline{D}, I_D; \theta) + \mathcal{L}_{Retrieval}(Q, I_Q; \theta)$$
$$= -\sum_{d \in \underline{D}} \log P(id \mid d; \theta) - \sum_{q \in Q} \sum_{id^q \in I_Q} \log P(id^q \mid q; \theta)$$

$$\mathcal{L}_{Global}(Q, \underline{D}, I_D, I_Q; \theta) = \mathcal{L}_{Indexing}(\underline{D}, I_D; \theta) + \mathcal{L}_{Retrieval}(Q, I_Q; \theta)$$
$$= -\sum_{d \in \underline{D}} \log P(id \mid d; \theta) - \sum_{q \in Q} \sum_{id^q \in I_Q} \log P(id^q \mid q; \theta)$$

- Stationary scenarios: The document collection is fixed
- Dynamic scenarios: Information changes and new documents emerge incrementally over time

$$\mathcal{L}_{Global}(\underline{Q}, D, I_D, \underline{I_Q}; \theta) = \mathcal{L}_{Indexing}(D, I_D; \theta) + \mathcal{L}_{Retrieval}(\underline{Q}, \underline{I_Q}; \theta)$$
$$= -\sum_{d \in D} \log P(id \mid d; \theta) - \sum_{q \in Q} \sum_{id^q \in I_Q} \log P(id^q \mid q; \theta)$$

According to the availability of labeled data, the training approaches in stationary scenarios can be generally classified into:

- Supervised learning methods
- Pre-training methods

- Learn the indexing task first, and then learn retrieval tasks
 - Step 1: $\mathcal{L}_{Indexing}(D, I_D; \theta) = -\sum_{d \in D} \log P(id \mid d; \theta)$
 - Step 2: $\mathcal{L}_{Retrieval}(Q, I_Q; \theta) = -\sum_{q \in Q} \sum_{id^q \in I_Q} \log P(id^q \mid q; \theta)$

Learn the indexing task first, and then learn retrieval tasks

• Step 1:
$$\mathcal{L}_{Indexing}(D, I_D; \theta) = -\sum_{d \in D} \log P(id \mid d; \theta)$$

- Step 2: $\mathcal{L}_{Retrieval}(Q, I_Q; \theta) = -\sum_{q \in Q} \sum_{id^q \in I_Q} \log P(id^q \mid q; \theta)$
- Learn indexing and retrieval tasks simultaneously in a multitask fashion

$$\mathcal{L}_{Global}(Q, D, I_D, I_Q; \theta) = \mathcal{L}_{Indexing}(D, I_D; \theta) + \mathcal{L}_{Retrieval}(Q, I_Q; \theta)$$
$$= -\sum_{d \in D} \log P(id \mid d; \theta) - \sum_{q \in Q} \sum_{id^q \in I_Q} \log P(id^q \mid q; \theta)$$

Learn the indexing task first, and then learn retrieval tasks

• Step 1:
$$\mathcal{L}_{Indexing}(D, I_D; \theta) = -\sum_{d \in D} \log P(id \mid d; \theta)$$

- Step 2: $\mathcal{L}_{Retrieval}(Q, I_Q; \theta) = -\sum_{q \in Q} \sum_{id^q \in I_Q} \log P(id^q \mid q; \theta)$
- Learn indexing and retrieval tasks simultaneously in a multitask fashion

$$\mathcal{L}_{Global}(Q, D, I_D, I_Q; \theta) = \mathcal{L}_{Indexing}(D, I_D; \theta) + \mathcal{L}_{Retrieval}(Q, I_Q; \theta)$$
$$= -\sum_{d \in D} \log P(id \mid d; \theta) - \sum_{q \in Q} \sum_{id^q \in I_Q} \log P(id^q \mid q; \theta)$$

$$\mathcal{L}_{Global}(Q, D, I_D, I_Q; \theta) = \underbrace{\mathcal{L}_{Indexing}(D, I_D; \theta)}_{d \in D} + \underbrace{\mathcal{L}_{Retrieval}(Q, I_Q; \theta)}_{q \in Q}$$
$$= -\sum_{d \in D} \log P(id \mid \underline{d}; \theta) - \sum_{q \in Q} \sum_{id^q \in I_Q} \log P(id^q \mid q; \theta)$$

"Semantic-Enhanced Differentiable Search Index Inspired by Learning Strategies". Tang et al. [2023a]

$$\mathcal{L}_{Global}(Q, D, I_D, I_Q; \theta) = \mathcal{L}_{Indexing}(D, I_D; \theta) + \mathcal{L}_{Retrieval}(Q, I_Q; \theta)$$
$$= -\sum_{d \in D} \log P(id \mid \underline{d}; \theta) - \sum_{q \in Q} \sum_{id^q \in I_Q} \log P(id^q \mid q; \theta)$$

When indexing, memorizing each document at a single granularity, e.g., first L tokens or the full text, is insufficient, especially for long documents with rich semantics.

• Given a document, the important passages *p* and sentences *s* are selected to augment the indexing data

• Given a document, the important passages *p* and sentences *s* are selected to augment the indexing data

$$\mathcal{L}_{Indexing}(D, I_D; \theta) = -(\sum_{d \in D} \log P(id \mid d; \theta) + \sum_{p \in d} \log P(id \mid p; \theta) + \sum_{s \in d} \log P(id \mid s; \theta))$$

"Semantic-Enhanced Differentiable Search Index Inspired by Learning Strategies". Tang et al. [2023a]

Supervised learning: Multi-granularity enhanced

- Leading-style: Directly use the leading passages and sentences
- Summarization-style: Leverage the document summarization technique, e.g., TextRank, to highlight important parts

- Backbone: T5-base
- Multi-granularity representations of documents can comprehensively encode the documents, and further contribute to the retrieval

$$\mathcal{L}_{Global}(Q, D, I_D, I_Q; \theta) = \mathcal{L}_{Indexing}(\underline{D}, I_D; \theta) + \mathcal{L}_{Retrieval}(\underline{Q}, I_Q; \theta)$$
$$= -\sum_{d \in D} \log P(id \mid \underline{d}; \theta) - \sum_{q \in Q} \sum_{id^q \in I_Q} \log P(id^q \mid \underline{q}; \theta)$$

$$\mathcal{L}_{Global}(Q, D, I_D, I_Q; \theta) = \mathcal{L}_{Indexing}(\underline{D}, I_D; \theta) + \mathcal{L}_{Retrieval}(\underline{Q}, I_Q; \theta)$$
$$= -\sum_{d \in D} \log P(id \mid \underline{d}; \theta) - \sum_{q \in Q} \sum_{id^q \in I_Q} \log P(id^q \mid \underline{q}; \theta)$$

Long document in indexing vs. Short query in retrieval

$$\mathcal{L}_{Global}(Q, D, I_D, I_Q; \theta) = \mathcal{L}_{Indexing}(\underline{D}, I_D; \theta) + \mathcal{L}_{Retrieval}(\underline{Q}, I_Q; \theta)$$
$$= -\sum_{d \in D} \log P(id \mid \underline{d}; \theta) - \sum_{q \in Q} \sum_{id^q \in I_Q} \log P(id^q \mid \underline{q}; \theta)$$

Long document in indexing vs. Short query in retrieval

The data distribution mismatch that occurs between the indexing and retrieval

Using a set of pseudo queries *pq* generated from the document as the inputs of the indexing task

$$\mathcal{L}_{Indexing}(D, I_D; \theta) = -\sum_{d \in D} \log P(id \mid \underline{d}; \theta)$$

$$\mathcal{L}_{Indexing}(D, I_D; \theta) = -\sum_{pq \in D} \log P(id \mid \underline{pq}; \theta)$$

"Bridging the Gap Between Indexing and Retrieval for Differentiable Search Index with Query Generation". Zhuang et al. [2023]

$$\mathcal{L}_{Indexing}(D, I_D; \theta) = -\sum_{d \in D} \log P(id \mid \underline{d}; \theta)$$

$$\mathcal{L}_{Indexing}(D, I_D; \theta) = -\sum_{pq \in D} \log P(id \mid \underline{pq}; \theta)$$

$$\mathcal{L}_{Retrieval}(Q, I_Q; \theta) = -\sum_{q \in Q} \sum_{id^q \in I_Q} \log P(id^q \mid q; \theta)$$

"Bridging the Gap Between Indexing and Retrieval for Differentiable Search Index with Query Generation". Zhuang et al. [2023]

Comparisons

- Backbone: T5-base
- Using only pseudo synthetic queries to docid during indexing is an effective training strategy on MS MARCO [Pradeep et al., 2023]

$$\mathcal{L}_{Global}(Q, D, I_D, I_Q; \theta) = \mathcal{L}_{Indexing}(D, I_D; \theta) + \mathcal{L}_{Retrieval}(Q, I_Q; \theta)$$

$$\mathcal{L}_{Global}(Q, D, I_D, I_Q; \theta) = \mathcal{L}_{Indexing}(D, I_D; \theta) + \mathcal{L}_{Retrieval}(Q, I_Q; \theta)$$

What should we do if there is no or few labeled query-docid pairs?

Constructing pseudo query-docid pairs (PQ, I_Q^P) for the pre-training retrieval task

$$\mathcal{L}_{\textit{Pre-train}}(\textit{PQ}, \textit{D}, \textit{I}_{\textit{D}}, \textit{I}_{\textit{Q}}^{\textit{P}}; \theta) = \mathcal{L}_{\textit{Indexing}}(\textit{D}, \textit{I}_{\textit{D}}; \theta) + \mathcal{L}_{\textit{Retrieval}}(\textit{PQ}, \textit{I}_{\textit{Q}}^{\textit{P}}; \theta)$$

INPUT: Apple Inc. is an American multinational [] software and online services. OUTPUT: Apple Inc. ISS	Apple Inc. Apple Inc. is an American multinational technology company that specializes in consumer electronics, software and online services, Apple is the largest information technology company by revenue [] (Apple was founded as Apple Computer Company on April 1, 1976, by Steve Jobs, Steve Wozniak and Ronald Warve to develop and self Wozniak's Apple Lersonal computer [] Apple wort oublic in 1980. In instant financial	INPUT: Apple became the first publicly traded U.S. company to be valued at over \$1 trillion in August 2018, then \$2 trillion in August 2020, and most recently \$3 trillion in January 2022. The
INPUT: Apple was founded as Apple Computer Company on April 1, 1976 [] while	success. The company developed computers featuring innovative graphical user interfaces, including the original Macintosh, announced in a critically acclaimed advertisement, "1984", directed by Ridley Scott. By 1985, the high cost of its products and power struggles between executives caused probleme. Wozniak stepped back from Apple amicably, while Jobs resigned to found NeXT, taking some Apple employees with him.	company sometimes receives criticism regarding the labor practices of its contractors, its environmental practices, and its business ethics, including anti- competitive practices and materials
Some Apple employees with him. OUTPUT: Apple Inc. [SEP] Tim Cook	[] Apple became the first publicly traded U.S. company to be valued at over \$1 tillion in August 2018, then \$2 trillion in August 2020, and most recently \$3 trillion in January 2022. The company sometimes receives criticism – regarding the labor practices of its contractors, its environmental practices, and its business ethics, including anti- competitive practices and materials sourcing. []	Sourcing. OUTPUT: Criticism of Apple Inc. HIP

Based on Wikipedia, three pre-training retrieval tasks are constructed

CorpusBrain [Chen et al., 2022]: Pre-training

Inner Sentence Selection (ISS):

- Pseudo query (PQ): Randomly selected inner sentence from its document
- Docid (I^P_Q): Concatenated relevant document titles, i.e., "title [SEP] title [SEP] title"

CorpusBrain [Chen et al., 2022]: Pre-training

INPUT: Apple Inc. is an American multinational [] software and online services. OUTPUT:	Apple Inc. Apple Inc. is an American <u>multinational technology company</u> that specializes in <u>consumer electronics</u> , <u>software and cultice services</u> . Apple is the largest information technology company by revenue []	INPUT: Apple became the first publicly traded U.S. company to be valued at over \$1 trillion in August 2018, then \$2 trillion in August 2020, and most recently \$3 trillion in august 2022
Apple Inc. [SEP] Steve Jobs ISS INPUT: Apple was founded as Apple Computer Company (] while Jobs resigned to found NeXT, taking	Apple was founded as Apple Comparter Company on April 1, 1976, by <u>Steve Loba, Steve Worniak</u> and <u>Brends Warner</u> to develop and self Worniak's <u>Aprile</u> personal computer [] Apple ward <u>rabition</u> 1980, to <u>Instant financial</u> success. The company developed computers featuring innovative <u>graphical</u> user <u>Interfaces</u> , including the <u>original Macintosis</u> , announced in a critically acclaimed advertisement, " <u>1984</u> ", <u>directed by Rinder Sector</u> 1918b, the high cost of its products and power struggles between executives caused problems. Worzinak stepped back from Apple amicably, while Jobs resigned to found <u>NaCT</u> , taking some Apple employees with him.	The company sometimes receives criticism regarding the labor practices of its contractors, its environmental practices, and its business ethics, including anti- competitive practices and materials sourcing.
some Apple employees with him. OUTPUT: Apple Inc. LPS	[] Apple became the first publicly traded U.S. company to be valued at over 51 trillion in August 2018, then 52 trillion in August 2020, and most recently 53 trillion in August 2022. The company sometimes receives critical mergarizing the labor practices of its contractors, the anvironmental practices, and its business ethics, including anti-competitive practices and materials sourcing. []	OUTPUT: Criticism of Apple Inc. HIP

Lead Paragraph Selection (LPS):

- Pseudo query (PQ): A (lead) paragraph is sampled from the document
- Docid (I_Q^P) : Concatenated relevant document titles

CorpusBrain [Chen et al., 2022]: Pre-training

Hyperlink Identifier Prediction (HIP):

- Pseudo query (*PQ*): The anchor context, i.e., the surrounding contextual information in the anchor's corresponding sentence
- Docid (I_Q^P) : The document title of the destination page

• **Pre-training**: Based on the three pre-training tasks, a large number of pseudo pairs of query and document identifiers are constructed. All the tasks are formulated by a standard seq2seq objective for the pre-training

- **Pre-training**: Based on the three pre-training tasks, a large number of pseudo pairs of query and document identifiers are constructed. All the tasks are formulated by a standard seq2seq objective for the pre-training
- **Fine-tuning**: CorpusBrain is fine-tuned using the processed data (in a Seq2Seq pair format) in downstream tasks

- **Pre-training**: Based on the three pre-training tasks, a large number of pseudo pairs of query and document identifiers are constructed. All the tasks are formulated by a standard seq2seq objective for the pre-training
- **Fine-tuning**: CorpusBrain is fine-tuned using the processed data (in a Seq2Seq pair format) in downstream tasks
- **Test**: Given a test query, the fine-tuned CorpusBrain utilizes constrained beam search to decode relevant docids

 In the KILT leaderboard, Corpusbrain achieved first place in 5 of them, second place in 1 task, and third place in 4 tasks, outperforming traditional pipelined approaches

$$\mathcal{L}_{Global}(Q, D, I_D, I_Q; \theta) = \mathcal{L}_{Indexing}(D, I_D; \theta) + \mathcal{L}_{Retrieval}(Q, I_Q; \theta)$$
$$= -\sum_{d \in D} \log P(id \mid d; \theta) - \sum_{q \in Q} \sum_{id^q \in I_Q} \log P(id^q \mid q; \theta)$$

$$\mathcal{L}_{Global}(Q, D, I_D, I_Q; \theta) = \mathcal{L}_{Indexing}(D, I_D; \theta) + \mathcal{L}_{Retrieval}(Q, I_Q; \theta)$$
$$= -\sum_{d \in D} \log P(id \mid d; \theta) - \sum_{q \in Q} \sum_{id^q \in I_Q} \log P(id^q \mid q; \theta)$$

- It assumes the likelihood for each relevant docid is independent of the other docids in the list for a query
- Ranking is a prediction task on list of objects
$$\mathcal{L}_{Global}(Q, D, I_D, I_Q; \theta) = \mathcal{L}_{Indexing}(D, I_D; \theta) + \mathcal{L}_{Retrieval}(Q, I_Q; \theta)$$
$$= -\sum_{d \in D} \log P(id \mid d; \theta) - \sum_{q \in Q} \sum_{id^q \in I_Q} \log P(id^q \mid q; \theta)$$

- It assumes the likelihood for each relevant docid is independent of the other docids in the list for a query
- Ranking is a prediction task on list of objects

Pairwise and listwise optimization strategies for GR are necessary!

- Step 1: Initial training with pointwise optimization
- Step 2: Based on the trained initial model, perform pairwise optimization

$$max(0, s(q, d_{-}) - s(q, d_{+}) + m),$$

where d_{-} and d_{+} are negative and positive documents, and *m* is the margin

MS MARCO Passage Ranking

Training with position-aware ListMLE

• View the docid ranking problem as a sequential learning process, with each step targeting to maximize the corresponding stepwise probability distribution

Given:

- A query q
- Its ground-truth docid list $\pi_q = [id^{(1)}, id^{(2)}, \ldots]$, in descending order of relevance, where $id^{(1)}$ is the docid ranked at the first position, and $id^{(2)}$ is the docid ranked at the second position, and so on

Step 1: Maximize the following top-1 positional conditional probability:

$$P(id^{(1)} \mid q; \theta) = \frac{\exp(\tilde{P}(id^{(1)} \mid q; \theta))}{\sum_{j=1}^{n} \exp(\tilde{P}(id^{(j)} \mid q; \theta))},$$

where $\tilde{P}(id^{(i)} \mid q; \theta) = \frac{\log \prod_{t \in [1, |id^{(i)}|]} P(w_t \mid q, w_{< t}; \theta)}{|id^{(i)}|}$ (without considering the ranking order information), and $P(id^{(i)} \mid q; \theta)$ is the generated likelihood of the *i*-th relevant docid $id^{(i)}$ for q

Step 2: For i = 2, ..., n, maximize the following *i*-th positional conditional probability given the preceding top i - 1 docids,

$$P(id^{(i)} \mid q, id^{(1)}, \dots, id^{(i-1)}; \theta) = \frac{\exp(\tilde{P}(id^{(i)} \mid q; \theta))}{\sum_{j=i}^{n} \exp(\tilde{P}(id^{(j)} \mid q; \theta))}$$

The learning process ends at step n+1

"Listwise Generative Retrieval Models via a Sequential Learning Process". Tang et al. [2023b]

Listwise loss with position importance

• Listwise probability with position importance

$$\begin{split} \min_{\theta} &-\log P(\pi_q \mid q; \theta) \\ &= -\alpha(1)\log P(id^{(1)} \mid q; \theta) - \sum_{i=2}^n \alpha(i)\log P\left(id^{(i)} \mid q, id^{(1)}, \dots, id^{(i-1)}; \theta\right), \end{split}$$

where the weight $\alpha(\cdot)$ is a decreasing function

• Listwise loss function incorporating the probability based on Plackett-Luce model

$$\mathcal{L}_{List}(q, \pi_q; \theta) = \sum_{i=1}^{n} \alpha(i) \left(-\tilde{P}(id^{(i)} \mid q; \theta) + \log \left(\sum_{k=i}^{n} \exp(\tilde{P}(id^{(k)} \mid q; \theta)) \right) \right)$$

"Listwise Generative Retrieval Models via a Sequential Learning Process". Tang et al. [2023b]

Based on reinforce learning framework

- train a linear reward model
- train a GR model with pointwise, pairwise and listwise optimization strategies

Multiple optimization: GenRRL [Zhou et al., 2023]

• Pointwise optimization:

$$-\sum_{i}(R(q, id_i) - b)\sum_{t}\log P(w_t^i \mid w_{< t}, q),$$

where R is a reward model, and b is a baseline

Multiple optimization: GenRRL [Zhou et al., 2023]

- Pointwise optimization:
 - $-\sum_{i}(R(q, id_{i}) b)\sum_{t} \log P(w_{t}^{i} \mid w_{< t}, q),$ where R is a reward model, and b is a baseline
- Pairwise optimization:

$$\begin{split} &-\sum_{(id_i,id_j)}(R(q,id_i)\log p_{ij}+R(q,id_j)\log p_{ji},\\ &\text{where } p_{ij}=|P(w_t^i\mid q)-P(w_t^j\mid q)| \end{split}$$

Multiple optimization: GenRRL [Zhou et al., 2023]

- Pointwise optimization:
 - $-\sum_{i} (R(q, id_{i}) b) \sum_{t} \log P(w_{t}^{i} \mid w_{< t}, q),$

where R is a reward model, and b is a baseline

• Pairwise optimization:

$$\begin{split} &-\sum_{(id_i,id_j)}(R(q,id_i)\log p_{ij}+R(q,id_j)\log p_{ji},\\ \text{where } p_{ij} = |P(w_t^i\mid q)-P(w_t^j\mid q)| \end{split}$$

Listwise optimization:

$$-\sum_{id_i \in C} R(q, id_i) \log rac{\exp(P(id_i|q))}{\sum_j \exp(P(id_j|q))}$$

"Enhancing Generative Retrieval with Reinforcement Learning from Relevance Feedback". Zhou et al. [2023]

"Enhancing Generative Retrieval with Reinforcement Learning from Relevance Feedback". Zhou et al. [2023]

$$\mathcal{L}_{Global}(Q, \underline{D}, I_D, I_Q; \theta) = \mathcal{L}_{Indexing}(\underline{D}, I_D; \theta) + \mathcal{L}_{Retrieval}(Q, I_Q; \theta)$$
$$= -\sum_{d \in \underline{D}} \log P(id \mid d; \theta) - \sum_{q \in Q} \sum_{id^q \in I_Q} \log P(id^q \mid q; \theta)$$

Information changes and new documents emerge incrementally over time

Continual learning task: Formulation

• Initial model: A large-scale base document set D_0 and sufficiently many labeled query-document pairs

Continual learning task: Formulation

- Initial model: A large-scale base document set D_0 and sufficiently many labeled query-document pairs
- New datasets: T new datasets D₁,..., D_T, from T sessions arriving in a sequential manner, which are only composed of newly encountered documents without queries related to these documents

Continual learning task: Formulation

- Initial model: A large-scale base document set D_0 and sufficiently many labeled query-document pairs
- New datasets: T new datasets D₁,..., D_T, from T sessions arriving in a sequential manner, which are only composed of newly encountered documents without queries related to these documents
- Model update: The new dataset D_t and previous datasets D_0, \ldots, D_{t-1}

Continual learning task: Evaluation

Two types of test query set for performance evaluation:

- **Single query set**: There is only one test query set, and their relevant documents arrive in different sessions
- Sequential query set: The test query set is specific for each session, and the relevant documents appear in existing sessions

Continual learning task: Evaluation

Two types of test query set for performance evaluation:

- **Single query set**: There is only one test query set, and their relevant documents arrive in different sessions
- Sequential query set: The test query set is specific for each session, and the relevant documents appear in existing sessions

Catastrophic forgetting

The GR model undergoes severe forgetting under continual indexing of new documents

"DSI++: Updating Transformer Memory with New Documents". Mehta et al. [2022]

• How to incrementally index new documents with low computational and memory costs?

- How to incrementally index new documents with low computational and memory costs?
- How to prevent catastrophic forgetting for previously indexed documents and maintain the retrieval ability?

- Docid: unique atomic integers
- Constrained optimization problem: find the optimal document vector for a new document, do not modify any other existing document vectors and do not require broader updates to the query encoder

IncDSI [Kishore et al., 2023]: Incrementally indexing new documents

- Constrained optimization:
 - The new document is scored higher than all the existing documents for the its representative query embedding

IncDSI [Kishore et al., 2023]: Incrementally indexing new documents

- Constrained optimization:
 - The new document is scored higher than all the existing documents for the its representative query embedding
 - The new document is scored lower than all the existing documents for other representative query embedding

DSI++ [Mehta et al., 2022]: Incrementally indexing new documents

• Docids: The new documents are assigned unstructured atomic integers as docids, and the GR model learns new embeddings for each of them

DSI++ [Mehta et al., 2022]: Incrementally indexing new documents

- Docids: The new documents are assigned unstructured atomic integers as docids, and the GR model learns new embeddings for each of them
- Modifying the training dynamics: Since flatter minima implicitly alleviate forgetting, optimizing for flatter loss basins using Sharpness-Aware Minimization (SAM) as an objective allows the model to stably memorize more documents

(a) Indexing accuracy during memorization

• SAM outperforms Adafactor in terms of the overall indexing accuracy

(b) Cumulative histogram of forgetting events

• SAM undergoes less severe fluctuations during the course of training

DSI++ [Mehta et al., 2022]: Preventing catastrophic forgetting

• Generative memory: Train a query generator model to sample pseudo-queries for previously seen documents and supplement the query-docid pairs during continual indexing

DSI++ [Mehta et al., 2022]: Preventing catastrophic forgetting

- Generative memory: Train a query generator model to sample pseudo-queries for previously seen documents and supplement the query-docid pairs during continual indexing
- It reduces the forgetting, and improves average Hits@10 by +21.1% over baselines

"DSI++: Updating Transformer Memory with New Documents". Mehta et al. [2022]

• Learning embeddings for each individual new docid from scratch incurs prohibitively high computational costs

- Learning embeddings for each individual new docid from scratch incurs prohibitively high computational costs
- The relationships between new and old documents may not be easily obtained from randomly-selected exemplars

Incremental product quantization (PQ) codes as identifiers: Update a partial quantization codebook according to two adaptive thresholds

Incremental product quantization (PQ) codes as identifiers: Update a partial quantization codebook according to two adaptive thresholds

- Build base PQ
 - Centroids are obtained via clustering over document representations
 - Document representations are learned with a bootstrapped training process

CLEVER [Chen et al., 2023]: Incremental product quantization

- Update adaptively
 - Dynamic thresholds: Average distance (ad); maximum distance (md)
 - Three types of update for centroid representation: Depend on contributions to centroid update

CLEVER [Chen et al., 2023]: Preventing catastrophic forgetting

Memory-augmented learning mechanism: Form meaningful connections between old and new documents
CLEVER [Chen et al., 2023]: Preventing catastrophic forgetting

Memory-augmented learning mechanism: Form meaningful connections between old and new documents

• Dynamic memory bank: Construct a memory bank with similar documents for each new session and replay the process of indexing them alongside the indexing of new documents

"Continual Learning for Generative Retrieval over Dynamic Corpora". Chen et al. [2023]

CLEVER [Chen et al., 2023]: Memory-augmented learning mechanism

• **Pseudo query-docid pairs**: Train a query generator model to sample pseudo-queries for documents and supplement the query-docid pairs during indexing

CLEVER [Chen et al., 2023]: Memory-augmented learning mechanism

 Sequentially training: new documents indexing, old document rehearsal, retrieval maintenance losses and an elastic weight consolidation (EWC) loss as a regularization term

CLEVER [Chen et al., 2023]: Performance

• CLEVER almost avoids catastrophic forgetting on both indexing and retrieval tasks, showing its effectiveness in a dynamic setting

"Continual Learning for Generative Retrieval over Dynamic Corpora". Chen et al. [2023]

How to jointly train the GR model and QA model?

$$\mathcal{L}_{QA}(\boldsymbol{Q}^*, \boldsymbol{I}_D^*, \boldsymbol{D}^*, \boldsymbol{A}; \psi) = -\sum_{\boldsymbol{q}^* \in \boldsymbol{Q}^*, i \boldsymbol{d} \in \boldsymbol{I}_D, \boldsymbol{d} \in \boldsymbol{D}, \boldsymbol{a} \in \boldsymbol{A}} \log f(\boldsymbol{a} | \boldsymbol{q}^*, i \boldsymbol{d}, \boldsymbol{d}; \psi),$$

where Q^* is the query set of the downstream task, I_D^* are the docids retrieved by a GR model, D^* are the corresponding documents, a is an answer in the answer set A, f is the QA function and ψ is the model parameters

- Step 1: **Document retrieval** with a GR model
- Step 2: Answer generation with another autoregressive model

- Step 1: Relevant titles generation using a GR model
- Step 2: Retrieved titles reranking using a cross-encoder
- Step 3: Context retrieval for titles using BM25
- Step 4: Answer generation using an generative model

Generative document retrieval and grounded answer generation rely on separate retrieval and reader module, which may hinder simultaneous optimization

• Joint learning for GR and QA

UniGen [Li et al., 2023a]: Architecture

• A shared encoder and two distinct decoders for GR and QA

 Use LLMs to generate a query context and document summary, serving as bridges between query inputs, documents, and answer outputs

"UniGen: A Unified Generative Framework for Retrieval and Question Answering with Large Language Models". Li et al. [2023a]

 a unified language model that leverages external corpus to tackle various knowledge-intensive tasks by integrating GR, closed-book generation, and RAG through a unified greedy decoding process

"CorpusLM: Towards a Unified Language Model on Corpus for Knowledge-Intensive Tasks". Li et al. [2024]

- Existing GR models only perform well on artificially-constructed and small-scale collections
- Zeng et al. [2024a] and Zeng et al. [2024b] introduced RIPOR and PAG, designed to improve the performance of GR models for MS MARCO dataset, with 8.8M passages.

It is necessary to explore the capacity of GR models to larger corpus

"Scalable and Effective Generative Information Retrieval". Zeng et al. [2024a] & Planning Ahead in Generative Retrieval: Guiding Autoregressive Generation through Simultaneous Decoding Zeng et al. [2024b] • How to memorize the whole corpus effectively and efficiently?

• How to memorize the whole corpus effectively and efficiently?

- Multi-granularity enhanced document content
- Pre-training
- Listwise optimization

- How to memorize the whole corpus effectively and efficiently?
 - Multi-granularity enhanced document content
 - Pre-training
 - Listwise optimization
- How to learn heterogeneous tasks well within a single model?

- How to memorize the whole corpus effectively and efficiently?
 - Multi-granularity enhanced document content
 - Pre-training
 - Listwise optimization
- How to learn heterogeneous tasks well within a single model?
 - Pseudo query enhanced input

- How to memorize the whole corpus effectively and efficiently?
 - Multi-granularity enhanced document content
 - Pre-training
 - Listwise optimization
- How to learn heterogeneous tasks well within a single model?
 - Pseudo query enhanced input
- How to handle a dynamically evolving document collection?

- How to memorize the whole corpus effectively and efficiently?
 - Multi-granularity enhanced document content
 - Pre-training
 - Listwise optimization
- How to learn heterogeneous tasks well within a single model?
 - Pseudo query enhanced input
- How to handle a dynamically evolving document collection?
 - Low computational and memory costs
 - Maintaining the retrieval ability

References

References i

- J. Chen, R. Zhang, J. Guo, Y. Liu, Y. Fan, and X. Cheng. Corpusbrain: Pre-train a generative retrieval model for knowledge-intensive language tasks. In *Proceedings of the 31st ACM International Conference on Information & Knowledge Management*, pages 191–200, 2022.
- J. Chen, R. Zhang, J. Guo, M. de Rijke, W. Chen, Y. Fan, and X. Cheng. Continual learning for generative retrieval over dynamic corpora. In *Proceedings of the 32nd ACM Conference on Information and Knowledge Management*, 2023.
- V. Kishore, C. Wan, J. Lovelace, Y. Artzi, and K. Q. Weinberger. Incdsi: incrementally updatable document retrieval. In *International Conference on Machine Learning*, pages 17122–17134. PMLR, 2023.
- X. Li, Y. Zhou, and Z. Dou. Unigen: A unified generative framework for retrieval and question answering with large language models. In *AAAI Conference on Artificial Intelligence*, 2023a.
- X. Li, Z. Dou, Y. Zhou, and F. Liu. CorpusIm: Towards a unified language model on corpus for knowledge-intensive tasks. In *Proceedings of the 2024 ACM SIGIR International Conference on Theory of Information Retrieval*, 2024.

References ii

- Y. Li, N. Yang, L. Wang, F. Wei, and W. Li. Generative retrieval for conversational question answering. *Information Processing & Management*, 60(5):103475, 2023b.
- Y. Li, N. Yang, L. Wang, F. Wei, and W. Li. Learning to rank in generative retrieval. In *The 38th* Annual AAAI Conference on Artificial Intelligence, 2023c.
- S. V. Mehta, J. Gupta, Y. Tay, M. Dehghani, V. Q. Tran, J. Rao, M. Najork, E. Strubell, and D. Metzler. DSI++: Updating transformer memory with new documents. arXiv preprint arXiv:2212.09744, 2022.
- R. Pradeep, K. Hui, J. Gupta, A. D. Lelkes, H. Zhuang, J. Lin, D. Metzler, and V. Q. Tran. How does generative retrieval scale to millions of passages? In *Gen-IR@SIGIR 2023: The First Workshop on Generative Information Retrieval*, 2023.
- E. Song, S. Kim, H. Lee, J. Kim, and J. Thorne. Re3val: Reinforced and reranked generative retrieval. In *Findings of the Association for Computational Linguistics*, 2024.
- Y. Tang, R. Zhang, J. Guo, J. Chen, Z. Zhu, S. Wang, D. Yin, and X. Cheng. Semantic-enhanced differentiable search index inspired by learning strategies. In 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023a.

References iii

- Y. Tang, R. Zhang, J. Guo, M. de Rijke, W. Chen, and X. Cheng. Listwise generative retrieval models via a sequential learning process. *ACM Transactions on Information Systems*, 2023b.
- Y. Tay, V. Q. Tran, M. Dehghani, J. Ni, D. Bahri, H. Mehta, Z. Qin, K. Hui, Z. Zhao, J. Gupta, T. Schuster, W. W. Cohen, and D. Metzler. Transformer memory as a differentiable search index. In Advances in Neural Information Processing Systems, volume 35, pages 21831–21843, 2022.
- H. Zeng, C. Luo, B. Jin, S. M. Sarwar, T. Wei, and H. Zamani. Scalable and effective generative information retrieval. In *The 2024 ACM Web Conference*, 2024a.
- H. Zeng, C. Luo, and H. Zamani. Planning ahead in generative retrieval: Guiding autoregressive generation through simultaneous decoding. In *Proceedings of the 2024 ACM SIGIR International Conference on Theory of Information Retrieval*, 2024b.
- Y. Zhou, Z. Dou, and J.-R. Wen. Enhancing generative retrieval with reinforcement learning from relevance feedback. In EMNLP 2023: Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, 2023.

References iv

S. Zhuang, H. Ren, L. Shou, J. Pei, M. Gong, G. Zuccon, and D. Jiang. Bridging the gap between indexing and retrieval for differentiable search index with query generation. In *Gen-IR@SIGIR 2023: The First Workshop on Generative Information Retrieval*, 2023.