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Section 4:

Training approaches



Revisit the definition of generative retrieval

GR usually exploits a Seq2Seq encoder-decoder architecture to generate a ranked list

of docids for an input query, in an autoregressive fashion
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Standard training objective

The common used training objective for both indexing and retrieval is maximum

likelihood estimation (MLE):

LGlobal(Q,D, ID , IQ ; θ) = LIndexing (D, ID ; θ) + LRetrieval(Q, IQ ; θ)

= −
∑
d∈D

logP(id | d ; θ)−
∑
q∈Q

∑
idq∈IQ

logP(idq | q; θ)
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Different learning scenarios based on the corpus

LGlobal(Q,D, ID , IQ ; θ) = LIndexing (D, ID ; θ) + LRetrieval(Q, IQ ; θ)

= −
∑
d∈D

logP(id | d ; θ)−
∑
q∈Q

∑
idq∈IQ

logP(idq | q; θ)

• Stationary scenarios: The document collection is fixed

• Dynamic scenarios: Information changes and new documents emerge

incrementally over time
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Stationary scenarios

LGlobal(Q,D, ID , IQ ; θ) = LIndexing (D, ID ; θ) + LRetrieval(Q, IQ ; θ)

= −
∑
d∈D

logP(id | d ; θ)−
∑
q∈Q

∑
idq∈IQ

logP(idq | q; θ)

According to the availability of labeled data, the training approaches in stationary

scenarios can be generally classified into:

• Supervised learning methods

• Pre-training methods
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Supervised learning: Basic training method

• Learn the indexing task first, and then learn retrieval tasks

Step 1: LIndexing (D, ID ; θ) = −
∑

d∈D logP(id | d ; θ)
Step 2: LRetrieval(Q, IQ ; θ) = −

∑
q∈Q

∑
idq∈IQ

logP(idq | q; θ)

• Learn indexing and retrieval tasks simultaneously in a multitask fashion

LGlobal(Q,D, ID , IQ ; θ) = LIndexing (D, ID ; θ) + LRetrieval(Q, IQ ; θ)

= −
∑
d∈D

logP(id | d ; θ)−
∑
q∈Q

∑
idq∈IQ

logP(idq | q; θ)

“Transformer Memory as a Differentiable Search Index”. Tay et al. [2022]
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Limitation (1): Single document granularity

LGlobal(Q,D, ID , IQ ; θ) = LIndexing (D, ID ; θ) + LRetrieval(Q, IQ ; θ)

= −
∑
d∈D

logP(id | d ; θ)−
∑
q∈Q

∑
idq∈IQ

logP(idq | q; θ)

When indexing, memorizing each document at a single granularity, e.g., first L tokens

or the full text, is insufficient, especially for long documents with rich semantics.

“Semantic-Enhanced Differentiable Search Index Inspired by Learning Strategies”. Tang et al. [2023a]
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Supervised learning: Multi-granularity enhanced

• Given a document, the important passages p and sentences s are selected to

augment the indexing data

LIndexing (D, ID ; θ) = −(
∑
d∈D

logP(id | d ; θ) +
∑
p∈d

logP(id | p; θ) +
∑
s∈d

logP(id | s; θ))

“Semantic-Enhanced Differentiable Search Index Inspired by Learning Strategies”. Tang et al. [2023a]
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Supervised learning: Multi-granularity enhanced

• Leading-style: Directly use the leading passages and sentences

• Summarization-style: Leverage the document summarization technique, e.g.,

TextRank, to highlight important parts

“Semantic-Enhanced Differentiable Search Index Inspired by Learning Strategies”. Tang et al. [2023a]
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Comparisons
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Limitation (2): The gap between indexing and retrieval

LGlobal(Q,D, ID , IQ ; θ) = LIndexing (D, ID ; θ) + LRetrieval(Q, IQ ; θ)

= −
∑
d∈D

logP(id | d ; θ)−
∑
q∈Q

∑
idq∈IQ

logP(idq | q; θ)

Long document in indexing vs. Short query in retrieval

The data distribution mismatch that occurs between the indexing and retrieval

“Bridging the Gap Between Indexing and Retrieval for Differentiable Search Index with Query Generation”. Zhuang et al. [2023]
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Supervised learning: Pseudo query enhanced

Using a set of pseudo queries pq generated from the document as the inputs of the

indexing task

“Bridging the Gap Between Indexing and Retrieval for Differentiable Search Index with Query Generation”. Zhuang et al. [2023]
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Supervised learning: Pseudo query enhanced

LIndexing (D, ID ; θ) = −
∑
d∈D

logP(id | d ; θ)

LIndexing (D, ID ; θ) = −
∑
pq∈D

logP(id | pq; θ)

LRetrieval(Q, IQ ; θ) = −
∑
q∈Q

∑
idq∈IQ

logP(idq | q; θ)

“Bridging the Gap Between Indexing and Retrieval for Differentiable Search Index with Query Generation”. Zhuang et al. [2023]
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Comparisons
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Limitation (3): Limited labeled data

LGlobal(Q,D, ID , IQ ; θ) = LIndexing (D, ID ; θ) + LRetrieval(Q, IQ ; θ)

What should we do if there is no or few labeled query-docid pairs?

14
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Pre-training methods

Constructing pseudo query-docid pairs (PQ, IPQ ) for the pre-training retrieval task

LPre−train(PQ,D, ID , I
P
Q ; θ) = LIndexing (D, ID ; θ) + LRetrieval(PQ, I

P
Q ; θ)
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CorpusBrain [Chen et al., 2022]: Pre-training

Based on Wikipedia, three pre-training retrieval tasks are constructed

“CorpusBrain: Pre-train a Generative Retrieval Model for Knowledge-Intensive Language Tasks”. Chen et al. [2022]
16



CorpusBrain [Chen et al., 2022]: Pre-training

Apple Inc.

Apple Inc. is an American multinational technology company that specializes in consumer electronics,
software and online services. Apple is the largest information technology company by revenue […]
Apple was founded as Apple Computer Company on April 1, 1976, by Steve Jobs, Steve Wozniak and
Ronald Wayne to develop and sell Wozniak's Apple I personal computer […] Apple went public in 1980, to
instant financial success. The company developed computers featuring innovative graphical user
interfaces, including the original Macintosh, announced in a critically acclaimed advertisement, "1984",
directed by Ridley Scott. By 1985, the high cost of its products and power struggles between executives
caused problems. Wozniak stepped back from Apple amicably, while Jobs resigned to found NeXT, taking
some Apple employees with him.
[…] Apple became the first publicly traded U.S. company to be valued at over $1 trillion in August 2018,
then $2 trillion in August 2020, and most recently $3 trillion in January 2022. The company sometimes
receives criticism regarding the labor practices of its contractors, its environmental practices, and its
business ethics, including anti-competitive practices and materials sourcing. […]

INPUT:
Apple became the first publicly 
traded U.S. company to be valued at 
over $1 trillion in August 2018, then 
$2 trillion in August 2020, and most 
recently $3 trillion in January 2022. 
The company sometimes receives 
criticism regarding the labor 
practices of its contractors, its 
environmental practices, and its 
business ethics, including anti-
competitive practices and materials 
sourcing.

OUTPUT:
Criticism of Apple Inc.

HIP

INPUT:
Apple Inc. is an American 
multinational […] software and 
online services. 

OUTPUT:
Apple Inc. [SEP] Steve Jobs

INPUT:
Apple was founded as Apple 
Computer Company […] while Jobs 
resigned to found NeXT, taking 
some Apple employees with him.

OUTPUT:
Apple Inc.

ISS

LPS

Inner Sentence Selection (ISS):

• Pseudo query (PQ): Randomly selected inner sentence from its document

• Docid (IPQ ): Concatenated relevant document titles, i.e., “title [SEP] title [SEP]

title”

“CorpusBrain: Pre-train a Generative Retrieval Model for Knowledge-Intensive Language Tasks”. Chen et al. [2022]
17
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Lead Paragraph Selection (LPS):

• Pseudo query (PQ): A (lead) paragraph is sampled from the document

• Docid (IPQ ): Concatenated relevant document titles

“CorpusBrain: Pre-train a Generative Retrieval Model for Knowledge-Intensive Language Tasks”. Chen et al. [2022]
18



CorpusBrain [Chen et al., 2022]: Pre-training
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LPS

Hyperlink Identifier Prediction (HIP):

• Pseudo query (PQ): The anchor context, i.e., the surrounding contextual

information in the anchor’s corresponding sentence

• Docid (IPQ ): The document title of the destination page

“CorpusBrain: Pre-train a Generative Retrieval Model for Knowledge-Intensive Language Tasks”. Chen et al. [2022]
19



CorpusBrain [Chen et al., 2022]: Training and inference

• Pre-training: Based on the three pre-training tasks, a large number of pseudo

pairs of query and document identifiers are constructed. All the tasks are

formulated by a standard seq2seq objective for the pre-training

• Fine-tuning: CorpusBrain is fine-tuned using the processed data (in a Seq2Seq

pair format) in downstream tasks

• Test: Given a test query, the fine-tuned CorpusBrain utilizes constrained beam

search to decode relevant docids

“CorpusBrain: Pre-train a Generative Retrieval Model for Knowledge-Intensive Language Tasks”. Chen et al. [2022]
20
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CorpusBrain [Chen et al., 2022]: Performance
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in 4 tasks, outperforming traditional

pipelined approaches

“CorpusBrain: Pre-train a Generative Retrieval Model for Knowledge-Intensive Language Tasks”. Chen et al. [2022]
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Limitation (4): Pointwise optimization for GR

LGlobal(Q,D, ID , IQ ; θ) = LIndexing (D, ID ; θ) + LRetrieval(Q, IQ ; θ)

= −
∑
d∈D

logP(id | d ; θ)−
∑
q∈Q

∑
idq∈IQ

logP(idq | q; θ)

• It assumes the likelihood for each relevant docid is independent of the other

docids in the list for a query

• Ranking is a prediction task on list of objects

Pairwise and listwise optimization strategies for GR are necessary!
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Pairwise optimization: LTRGR [Li et al., 2023c]

• Step 1: Initial training with pointwise optimization

• Step 2: Based on the trained initial model, perform pairwise optimization

max(0, s(q, d−)− s(q, d+) +m),

where d− and d+ are negative and positive documents, and m is the margin

“Learning to Rank in Generative Retrieval”. Li et al. [2023c]
23



LTRGR [Li et al., 2023c]: Performance
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“Learning to Rank in Generative Retrieval”. Li et al. [2023c]
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Listwise optimization: [Tang et al., 2023b]

Training with position-aware ListMLE

• View the docid ranking problem as a sequential learning process, with each step

targeting to maximize the corresponding stepwise probability distribution

“Listwise Generative Retrieval Models via a Sequential Learning Process”. Tang et al. [2023b]
25



Listwise optimization: [Tang et al., 2023b]

Given:

• A query q

• Its ground-truth docid list πq = [id (1), id (2), . . .], in descending order of relevance,

where id (1) is the docid ranked at the first position, and id (2) is the docid ranked

at the second position, and so on

“Listwise Generative Retrieval Models via a Sequential Learning Process”. Tang et al. [2023b]
26



Sequential learning process

Step 1: Maximize the following top-1 positional conditional probability:

P(id (1) | q; θ) = exp(P̃(id (1) | q; θ))∑n
j=1 exp(P̃(id

(j) | q; θ))
,

where P̃(id (i) | q; θ) =
log

∏
t∈[1,|id(i)|] P(wt |q,w<t ;θ)

|id (i)| (without considering the

ranking order information), and P(id (i) | q; θ) is the generated likelihood

of the i-th relevant docid id (i) for q

“Listwise Generative Retrieval Models via a Sequential Learning Process”. Tang et al. [2023b]
27



Sequential learning process

Step 2: For i = 2, . . . , n, maximize the following i-th positional conditional

probability given the preceding top i − 1 docids,

P(id (i) | q, id (1), . . . , id (i−1); θ) =
exp(P̃(id (i) | q; θ))∑n
j=i exp(P̃(id

(j) | q; θ))

The learning process ends at step n + 1

“Listwise Generative Retrieval Models via a Sequential Learning Process”. Tang et al. [2023b]
28



Listwise loss with position importance

• Listwise probability with position importance

min
θ

− logP(πq | q; θ)

= −α(1) logP(id (1) | q; θ)−
n∑

i=2

α(i) logP
(
id (i) | q, id (1), . . . , id (i−1); θ

)
,

where the weight α(·) is a decreasing function

• Listwise loss function incorporating the probability based on Plackett-Luce model

LList(q, πq; θ) =
n∑

i=1

α(i)

(
−P̃(id (i) | q; θ) + log

(
n∑

k=i

exp(P̃(id (k) | q; θ))

))

“Listwise Generative Retrieval Models via a Sequential Learning Process”. Tang et al. [2023b]
29



Multiple optimization: GenRRL [Zhou et al., 2023]

Based on reinforce learning framework

• train a linear reward model

• train a GR model with pointwise, pairwise and listwise optimization strategies

“Enhancing Generative Retrieval with Reinforcement Learning from Relevance Feedback”. Zhou et al. [2023]
30



Multiple optimization: GenRRL [Zhou et al., 2023]

• Pointwise optimization:

−
∑

i (R(q, idi )− b)
∑

t logP(w
i
t | w<t , q),

where R is a reward model, and b is a baseline

• Pairwise optimization:

−
∑

(idi ,idj )
(R(q, idi ) log pij + R(q, idj) log pji ,

where pij = |P(w i
t | q)− P(w j

t | q)|
• Listwise optimization:

−
∑

idi∈C R(q, idi ) log
exp(P(idi |q))∑
j exp(P(idj |q))

“Enhancing Generative Retrieval with Reinforcement Learning from Relevance Feedback”. Zhou et al. [2023]
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GenRRL [Zhou et al., 2023]: Performance
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Dynamic scenarios

LGlobal(Q,D, ID , IQ ; θ) = LIndexing (D, ID ; θ) + LRetrieval(Q, IQ ; θ)

= −
∑
d∈D

logP(id | d ; θ)−
∑
q∈Q

∑
idq∈IQ

logP(idq | q; θ)

Information changes and new documents emerge incrementally over time

33



Continual learning task: Formulation

• Initial model: A large-scale base document set D0 and sufficiently many labeled

query-document pairs

• New datasets: T new datasets D1, . . . ,DT , from T sessions arriving in a

sequential manner, which are only composed of newly encountered documents

without queries related to these documents

• Model update: The new dataset Dt and previous datasets D0, . . . ,Dt−1
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Continual learning task: Evaluation

Two types of test query set for performance evaluation:

• Single query set: There is only one test query set, and their relevant documents

arrive in different sessions

• Sequential query set: The test query set is specific for each session, and the

relevant documents appear in existing sessions
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Catastrophic forgetting

The GR model undergoes severe forgetting under continual indexing of new documents
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“DSI++: Updating Transformer Memory with New Documents”. Mehta et al. [2022]
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Challenges of continual learning for GR

• How to incrementally index new documents with low computational and memory

costs?

• How to prevent catastrophic forgetting for previously indexed documents and

maintain the retrieval ability?
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IncDSI [Kishore et al., 2023]

• Docid: unique atomic integers

• Constrained optimization problem: find the optimal document vector for a new

document, do not modify any other existing document vectors and do not require

broader updates to the query encoder

“IncDSI: Incrementally Updatable Document Retrieval”. Kishore et al. [2023]
38



IncDSI [Kishore et al., 2023]: Incrementally indexing new documents

• Constrained optimization:

The new document is scored higher than all the existing documents for the its

representative query embedding

The new document is scored lower than all the existing documents for other

representative query embedding

“IncDSI: Incrementally Updatable Document Retrieval”. Kishore et al. [2023]
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DSI++ [Mehta et al., 2022]: Incrementally indexing new documents

• Docids: The new documents are assigned unstructured atomic integers as docids,

and the GR model learns new embeddings for each of them

• Modifying the training dynamics: Since flatter minima implicitly alleviate

forgetting, optimizing for flatter loss basins using Sharpness-Aware Minimization

(SAM) as an objective allows the model to stably memorize more documents

“DSI++: Updating Transformer Memory with New Documents”. Mehta et al. [2022]
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DSI++ [Mehta et al., 2022]: Incrementally indexing new documents

• SAM outperforms Adafactor in terms

of the overall indexing accuracy

• SAM undergoes less severe

fluctuations during the course of

training
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“DSI++: Updating Transformer Memory with New Documents”. Mehta et al. [2022]
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DSI++ [Mehta et al., 2022]: Preventing catastrophic forgetting

• Generative memory: Train a query generator model to sample pseudo-queries for

previously seen documents and supplement the query-docid pairs during continual

indexing

• It reduces the forgetting, and improves average Hits@10 by +21.1% over baselines

“DSI++: Updating Transformer Memory with New Documents”. Mehta et al. [2022]
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Limitations of DSI++

• Learning embeddings for each individual new docid from scratch incurs

prohibitively high computational costs

• The relationships between new and old documents may not be easily obtained

from randomly-selected exemplars

“DSI++: Updating Transformer Memory with New Documents”. Mehta et al. [2022]
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CLEVER [Chen et al., 2023]: Incrementally indexing new documents

Incremental product quantization (PQ) codes as identifiers: Update a partial

quantization codebook according to two adaptive thresholds

• Build base PQ

Centroids are obtained via clustering over document representations

Document representations are learned with a bootstrapped training process

“Continual Learning for Generative Retrieval over Dynamic Corpora”. Chen et al. [2023]
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CLEVER [Chen et al., 2023]: Incremental product quantization

• Update adaptively

Dynamic thresholds: Average distance (ad); maximum distance (md)

Three types of update for centroid representation: Depend on contributions to

centroid update

“Continual Learning for Generative Retrieval over Dynamic Corpora”. Chen et al. [2023]
45



CLEVER [Chen et al., 2023]: Preventing catastrophic forgetting

Memory-augmented learning mechanism: Form meaningful connections between old

and new documents

• Dynamic memory bank: Construct a

memory bank with similar documents

for each new session and replay the

process of indexing them alongside the

indexing of new documents

“Continual Learning for Generative Retrieval over Dynamic Corpora”. Chen et al. [2023]
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CLEVER [Chen et al., 2023]: Memory-augmented learning mechanism

• Pseudo query-docid pairs: Train a

query generator model to sample

pseudo-queries for documents and

supplement the query-docid pairs

during indexing

“Continual Learning for Generative Retrieval over Dynamic Corpora”. Chen et al. [2023]
47



CLEVER [Chen et al., 2023]: Memory-augmented learning mechanism

• Sequentially training: new

documents indexing, old document

rehearsal, retrieval maintenance losses

and an elastic weight consolidation

(EWC) loss as a regularization term

“Continual Learning for Generative Retrieval over Dynamic Corpora”. Chen et al. [2023]
48



CLEVER [Chen et al., 2023]: Performance

Indexing (𝐷! → 𝐷") Retrieval (𝑄!#$%# → 𝑄"&'(&)

• CLEVER almost avoids catastrophic forgetting on both indexing and retrieval

tasks, showing its effectiveness in a dynamic setting
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Combination of GR and retrieval-agumented generation (RAG)

How to jointly train the GR model and QA model?

LQA(Q
∗, I ∗D ,D

∗,A;ψ) = −
∑

q∗∈Q∗,id∈ID ,d∈D,a∈A
log f (a|q∗, id , d ;ψ),

where Q∗ is the query set of the downstream task, I ∗D are the docids retrieved by a GR

model, D∗ are the corresponding documents, a is an answer in the answer set A, f is

the QA function and ψ is the model parameters

50



GCoQA [Li et al., 2023b]

• Step 1: Document retrieval with a GR model

• Step 2: Answer generation with another autoregressive model

“Generative retrieval for conversational question answering”. Li et al. [2023b]
51



Re3val [Song et al., 2024]

• Step 1: Relevant titles generation

using a GR model

• Step 2: Retrieved titles reranking

using a cross-encoder

• Step 3: Context retrieval for titles

using BM25

• Step 4: Answer generation using an

generative model

“Re3val: Reinforced and Reranked Generative Retrieval”. Song et al. [2024]
52



Limitation

Generative document retrieval and grounded answer generation rely on separate

retrieval and reader module, which may hinder simultaneous optimization

53



UniGen [Li et al., 2023a]

• Joint learning for GR and QA

“UniGen: A Unified Generative Framework for Retrieval and Question Answering with Large Language Models”. Li et al. [2023a]
54



UniGen [Li et al., 2023a]: Architecture

• A shared encoder and two distinct

decoders for GR and QA

“UniGen: A Unified Generative Framework for Retrieval and Question Answering with Large Language Models”. Li et al. [2023a]
55



UniGen [Li et al., 2023a]

• Use LLMs to generate a query context

and document summary, serving as

bridges between query inputs,

documents, and answer outputs

“UniGen: A Unified Generative Framework for Retrieval and Question Answering with Large Language Models”. Li et al. [2023a]
56



UniGen [Li et al., 2023a]: Performance
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CorpusLM [Li et al., 2024]

• a unified language model that leverages external corpus to tackle various

knowledge-intensive tasks by integrating GR, closed-book generation, and RAG

through a unified greedy decoding process

“CorpusLM: Towards a Unified Language Model on Corpus for Knowledge-Intensive Tasks”. Li et al. [2024]
58



Limitations in large-scale corpus

• Existing GR models only perform well on artificially-constructed and small-scale

collections

• Zeng et al. [2024a] and Zeng et al. [2024b] introduced RIPOR and PAG, designed

to improve the performance of GR models for MS MARCO dataset, with 8.8M

passages.

It is necessary to explore the capacity of GR models to larger corpus

“Scalable and Effective Generative Information Retrieval”. Zeng et al. [2024a] & Planning Ahead in Generative Retrieval: Guiding Autoregressive

Generation through Simultaneous Decoding Zeng et al. [2024b]
59



Revisit: Challenges of training approaches

• How to memorize the whole corpus effectively and efficiently?

Multi-granularity enhanced document content

Pre-training

Listwise optimization

• How to learn heterogeneous tasks well within a single model?

Pseudo query enhanced input

• How to handle a dynamically evolving document collection?

Low computational and memory costs

Maintaining the retrieval ability
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