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Information retrieval

Information retrieval (IR) is the activity of obtaining information resources that are
relevant to an information need from a collection of those resources.
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Information repository

Given: User query (keywords, question, image, ...)
Rank: Information objects (passages, documents, images, products, ...)
Ordered by: Relevance scores



Complex architecture design behind search engines
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Complex architecture design behind search engines

Query parser

Search
{ Syntlable } { Ontc|v|ogy } @
|
Module Modified
Que Crawlers
Retrieval il
Module

Intermediate Matching Web-page
Results Technique Prediction

Structured
Web-page
Repository

:} Offline Components
:] Online Components

e Advantages:

Web-page
Repository

Indexing
Module

m Pipelined paradigm has withstood the test of time

m Advanced machine learning and deep learning approaches applied to many
components of modern systems



Core pipelined paradigm: Index-Retrieval-Ranking
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® |ndex: Build an index for each document in the entire corpus
® Retriever: Find an initial set of candidate documents for a query

® Re-ranker: Determine the relevance degree of each candidate



Index-Retrieval-Ranking: Disadvantages
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e Effectiveness: Heterogeneous ranking components are usually difficult to be
optimized in an end-to-end way towards the global objective



Index-Retrieval-Ranking: Disadvantages

T,

Big storage Slow inference speed

GTR (Dense retrieval)
Memory size 1430MB

GTR (Dense retrieval)
Online latency 1.97s

e Efficiency: A large document index is needed to search over the corpus, leading
to significant memory consumption and computational overhead

Source: [Sun et al., 2023]



What if we replaced the pipelined architecture with a single consolidated

model that efficiently and effectively encodes all of the information con-
tained in the corpus?




Opinion paper: A single model for IR
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Generative language models
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Two families of generative retrieval

® (Closed-book: The language model is the only source of knowledge leveraged
during generation, e.g.,

m Capturing document ids in the language models
m Language models as retrieval agents via prompting
® Open-book: The language model can draw on external memory prior to, during,
and after generation, e.g.,

m Retrieval augmented generation of answers
m Tool-augmented generation of answers

Source: [Najork, 2023]
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Closed-book generative retrieval

The IR task can be formulated as a sequence-to-sequence (Seq2Seq) generation
problem
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Closed-book generative retrieval

The IR task can be formulated as a sequence-to-sequence (Seq2Seq) generation
problem

® Input: A sequence of query words

® Qutput: A sequence of document identifiers
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Neural IR models: Discriminative vs. Generative
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Why generative retrieval?
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o Effectiveness: Knowledge of all documents in corpus is encoded into model
parameters, which can be optimized directly in an end-to-end manner
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Why generative retrieval?

Data source: [Sun et al., 2023]

Dense retrieval

Memory size
(MS MARCO 300K)
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Generative retrieval
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o Efficiency: Main memory computation of GR is the storage of document

identifiers and model parameters

® Heavy retrieval process is replaced with a light generative process over the

vocabulary of identifiers
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Statistics of related publications
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The data statistics cover up to July 10, 2024.



Goals of the tutorial

e We will cover key developments on generative information retrieval (mostly
2021-2024)

Problem definitions
Docid design

Training approaches
Inference strategies

Applications
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Goals of the tutorial

e We will cover key developments on generative information retrieval (mostly
2021-2024)

Problem definitions
Docid design

Training approaches
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Applications

® We are still far from understanding how to best develop generative IR architecture
compared to traditional pipelined IR architecture:

m Taxonomies of existing research and key insights
m Our perspectives on the current challenges & future directions
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Schedule

Time Section Presenter

09:00 - 09:25  Section 1: Introduction Maarten de Rijke

09:25 - 09:55  Section 2: Definitions & Preliminaries ~ Zhaochun Ren

09:55 - 10:30  Section 3: Docid design Yubao Tang
30min coffee break

11:00 - 11:30  Section 4: Training approaches Zhaochun Ren

11:30 - 11:50  Section 5: Inference strategies Yubao Tang

11:50 - 12:00  Section 6: Applications Zhaochun Ren

12:00 - 12:15 Section 7: Challenges & Opportunities Maarten de Rijke

12:15-12:30 Q& A All
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